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Abstract: We have researched and developed a point cloud processing system on the Unreal Engine that recognizes changes 

between large time-series point cloud data measured by a laser scanner and performs structural data extraction.  

When associating time-series point cloud data with structural information (pipes, tanks, etc.) of each point cloud, CAD 

data (structural data) is currently created interactively by humans. Unreal Engine is a game engine that excels in visualization 

of 3D information and is suitable for checking updated data and automating procedures. We developed a user interface that 

automatically performs a series of update procedures at the touch of a button, and evaluated the effectiveness of the interface. 
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1. INTRODUCTION 

We have developed an automated point cloud processing 

system on Unreal Engine that detects changes over time in 

large point cloud data measured by a laser scanner and 

extracts structural data. In order to associate time-series 

point cloud data with structural information, such as that of 

pipes or tanks on a residential property, CAD data 

(structural data) is currently created interactively for 

individual point clouds by human operators. 

However, the larger the residential property, the more time 

consuming it is to associate point cloud data with structural 

information. With each change in the structure of the 

facility, manual updating is required. Consequently, there 

are cases where it takes several months to half a year for a 

single facility to have its structures identified  

highlighting the current need for improvements in time 

reduction and operational efficiency. Additionally, the 

association of point cloud data with structural information 

is gaining attention as a method for recreating and 

preserving real spaces digitally. 

In this context, we have attempted to automate and 

streamline the updating process by developing a prototype 

mechanism that automatically recognizes changes in point 

cloud data and reflects them in the structural data. 

2. SYSTEM METHOD 

We developed an interactive system on Unreal Engine for 

the extraction of differential information from time-series 

data, shape recognition of structures based on point cloud 

data, and interactive updating of 3D models. Unreal Engine 

is primarily a game engine designed for game development, 

and it is provided by the company Epic Games, known for 

developing games like Fortnite. The engine is available for 

free, and it enables the creation of high-quality 3D virtual 

worlds for various purposes beyond gaming, including VR, 

architecture, and television and film production (Fig. 1). 

 

Fig. 1 Unreal Engine Viewer 

The differential extraction for time-series point cloud data 

was implemented using the k-d tree method, a spatial 

partitioning technique, and was validated with extensive 

test data. This method confirms the detectability of point 

cloud data for components that have been moved, deleted, 

or added. To accurately recognize the shape of the 

differentially extracted point cloud data, a high-precision 

deep learning dataset was constructed using both point 

cloud data and CAD data. Partial scan data, obtained by 

laser measurement from arbitrary positions, including 

structural data with missing pipes, was used as training 

data. 

 

The input information consists of 3D point clouds, 3D 

CAD data, and measurement point information. Partial 

scan data can be generated from arbitrarily defined 

measurement points, and it was utilized as training data for 

PointNet++ [1]. 
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Regarding the automatic recognition and accuracy 

assessment of point cloud data through deep learning, point 

cloud data automatic recognition was performed using 

PointNet++. In the case of nine categories (duct, pipe, 

electrical equipment, auxiliary materials, etc.), high 

recognition accuracy was achieved, with an average 

Intersection over Union (IoU) of 95.2%. 

The dataset used for training comprised 6,644 instances 

with a total of 77,124,436 vertices. The IoU values ranged 

from 0.85 to 0.97 (85% to 97%). The trained model was 

then utilized for the structural recognition of differential 

point cloud data. 

 

Regarding the time-series data update, adding and deleting 

the surrounding meshes of differential point clouds is made 

possible using Open3D functions and labels based on shape 

recognition. After the update, deleted differential point 

clouds are excluded from the mesh loading target by 

removing the corresponding surrounding meshes. Added 

differential point clouds are processed through labeling, 

DBScan (grouping of distant differential point clouds), and 

voting (uniform labeling based on the most frequent label 

within each group). Subsequently, Open3D's BPA (Ball 

Pivoting Algorithm) is employed to mesh the labeled point 

clouds [2] [3]. 

By adding the resulting mesh to the loading target with the 

corresponding label name, the system can effectively 

handle the update. 

3. EVALUATION 

Using point cloud data obtained from 3D laser scanner 

measurements we created point cloud data for the initial 

state (t0) and the changed state (t1) (Fig. 2, Fig. 3). Next, 

we conducted the extraction of cut-out point cloud data 

using differential calculation on the two point cloud 

datasets, t0 and t1 (Fig. 4). 

After performing differential extraction, if the distance 

between one vertex in t0 and another vertex in t1 is within 

a specified error threshold, they are considered the same 

vertex, and that vertex is judged to contain no differences. 

By specifying an error threshold of 0.2 m, considering 

slight positional discrepancies during measurement, we 

obtained the differential point cloud data for the removed 

pipes and tanks. 

 

Fig. 2 Measurement results at time t₀ (initial state) 

 

Fig. 3 Measurement results at time t₁ (changed state) 

 

Fig. 4 t₀-t₁ Differential extraction (error threshold 0.2 m) 

 

Below are some examples of using the developed system. 

The user first specifies the point cloud data for initial state 

t₀ and the changed state t₁, along with an error threshold, 

then presses the execute button to automatically perform 

differential extraction and display the results (Fig. 5, Fig. 

6). 

 

Fig. 5 Differential extraction example 1: plates added  
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Fig. 6 Differential extraction example 2: pipes removed 

Shape recognition (semantic segmentation) using deep 

learning is then performed on the extracted differences, 

such as those shown in Figs. 5 and 6. In the examples, 

shape recognition is performed for the added shielding 

plates and the removed piping (Fig. 7). 

 

Fig. 7 Shape recognition of difference data 

 

Figs. 8 and 9 provide visual examples of the updated 

meshes, highlighting the meshes targeted for removal or 

addition. For clarity, the added elements are colored red 

using the BPA mesh, while the removed elements are 

colored blue on the existing mesh for visualization 

purposes. 

 

Fig. 8 Updated mesh data example 1: plate added 

 

Fig. 9: Updated mesh data example 2: pipe removed 

Fig. 10 demonstrates the loading and display of the updated 

mesh results in Unreal Engine. It demonstrates that the 

mesh data reflects the addition of the shielding plates and 

the removal of the pipes. Enabling lighting allows for 

shaded representation of the mesh. 

 

Fig. 10 Updated mesh display (top: overall view, bottom 

left: plate added, bottom right: pipe removed) 

The computational environment for each process is 

summarized in Table 1. 

Table 1 Computational environment 

CPU Intel® Core™ i7-11700 

RAM 64GB (8GB×8)  

GPU NVIDIA QUADRO RTX 3060Ti 

VRAM 8GB×1 

OS Windows 10 

 

The processing speed of the difference extraction was 

measured for both the original point cloud data (Case A) 

and the downsized point cloud data (Case B), and the 

processing time increased with the number of vertices at t0 

and t1. Shape recognition took approximately 1 to 2 

minutes for Case A and 20 to 30 seconds for Case B. For 

meshing, BPA was used for the downsized point cloud data 

(preferred in terms of suitability) and the processing time 

for Case B was measured, as shown in Figure 8. The time 

required for meshing is dominated by the BPA of the added 

difference, and the smaller the number of difference 

vertices, the faster the meshing. Therefore, in Figure 10, 

the results from Case B are used to create and display the 



 

4 

 

updated mesh. Comparing the results listed in Table 2, it is 

most efficient to store the base (high quality) point cloud 

data before and after the update, generate a reduced amount 

of data (about 1/10) just before performing the difference 

extraction, and use the reduced data for the mesh update. 

4. CONCLUSION 

In this system, we successfully performed differential 

extraction, shape recognition, and meshing of data before 

and after changes in point cloud data to effectively 

visualize structural changes. In the differential extraction, 

we obtained only the differential point cloud data that was 

added or removed between the initial and changed point 

cloud datasets, and confirmed the removal of some pipes 

and the addition of shielding plates in the examples. The 

calculation of differences utilized the k-d tree method, a 

spatial partitioning technique, allowing the extraction of 

data with distance errors by comparing point cloud data 

before and after changes. 

Next, for the shape recognition of differential point clouds, 

we prepared pre-associated training data for point clouds 

and structures such as pipes and tanks. The learning and 

recognition processes were carried out using PointNet++, 

a deep learning network that excels in point cloud 

recognition. The system was trained to classify structures 

into nine categories, enhancing recognition accuracy for 

each type of structure. 

Among the recognized point clouds, the point clouds 

corresponding to added structures were meshed using the 

BPA, confirming its effectiveness. BPA is widely used for 

meshing point cloud data and proved suitable for the laser-

scanned point cloud data used in this study. 

Finally, for the pre-updated structural data, we removed 

pipes marked for deletion and added mesh data for 

shielding plates. The updated structural data were created 

and visualized. The updated data were colored red for 

added data and blue for removed data to facilitate visual 

recognition of the updated areas. Regarding computation 

time, the processing time for differential extraction 

increased proportionally with the number of point cloud 

data points. However, downsampling to approximately 

one-tenth before differential extraction significantly 

reduced the automatic update time, including shape 

recognition and meshing, to about one-tenth of the original 

time. This ensured accurate visualization of the updated 

data. Therefore, downsampling the differential point cloud 

data in advance proved to be an effective strategy. 
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Table 2 Processing times for original and downsampled datasets 

Data Case Pattern Sampling Data Vertices 
Processing Time 

Diff. Recognition Meshing 

Case A 

Base Data 

Added Plate 

1/1 

[t0] 6,033,594 

[t1] 7,662,734 
3h18min 60sec 

More than 

12hours 
Removed Pipe 

[t0] 35,679,109 

[t1] 34,299,227 
9h38min 120sec 

Case B 

Down Sample Data 

Added Plate 

About 1/10 

[t0] 635,633 

[t1] 746,744 
45min 20sec 

47sec 

Removed Pipe 
[t0] 3,000,407 

[t1] 2,858,528 
2h30min 30sec 

 


