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Abstract: Imaging of coronary artery calcification using optical coherence tomography (OFDI) is an essential task in cardiac 
catheterization. Recently, many studies have been conducted to detect lesions from OFDI images, and diagnostic support systems 
equipped with these systems have been developed. However, the interfaces of existing diagnostic support systems pose 
difficulties in assessing thin areas of calcification, which are important for determining the presence of diastolic dysfunction. In 
this study, we created a deep learning model that automatically extracts calcified areas from coronary artery OFDI images. For 
the extracted calcified areas, to display the thickness of calcification more intuitively, we expressed the continuity as a ring shape 
and the thickness as color information. 
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1. INTRODUCTION 

Optical frequency domain imaging (OFDI) is now widely 
used in the catheterization and treatment of coronary arteries. 
OFDI is an intravascular diagnostic imaging system with a 
high resolution of 10-20μm, based on near-infrared laser 
light and fiber-optic technology. It can evaluate calcification 
with a spatial resolution ten times higher than IVUS, and it 
can extract calcification clearly with high resolution, so it has 
been introduced in various facilities. Recently, it has been 
reported that machine learning models have been created to 
detect and classify lesions from OCT images [1, 2, 3]. In 
particular, Chu et al. developed a new AI framework that can 
automatically characterize plaques pixel by pixel, and 
integrated it into a commercial diagnostic support system 
(Fig. 1) to achieve a highly accurate classification display of 
lesions in vascular cross-sections [3]. In addition, Abbott, 
located in the U.S., developed Ultreon 1.0, an AI-based 
software package for cardiovascular OCT diagnostic 
imaging systems. Figure 1 shows the user interface. It 
displays calcified areas by drawing arcs around the cross-
sectional view of blood vessels [4]. 
 
However, although these interfaces provide an evaluation of 
the continuity of the calcified area, only the maximum 
thickness of the calcified area is displayed, and no other 
thickness evaluation is available. Since the information 
required in percutaneous coronary intervention (PCI) is not 
the maximum thickness but whether there are regions with a 
thickness less than 0.5 mm, this paper proposes a 
visualization method that can produce results that can be 
understood more intuitively based on the continuity and 
thickness information for calcified regions. In this paper, we 
introduce this visualization method. Specifically, continuity 
is represented as a ring shape, and thickness is represented as 
color information simultaneously.  
 

 

 

Fig. 1 Visualization of lesion with OctPlus software. 

 

 
Fig. 2 Visualization of calcified area with Ultreon 1.0 

 

2. METHOD 

In this method, deep learning is used to extract the calcified 
regions [5]. The dataset consists of 2,149 coronary OCT 
images labeled by a physician. For labeling, the physician 
traced the inner boundary in red and the outer boundary in 
yellow, and two experts cross-checked the results. Each line  



 

 
Fig. 3 Creating a labeled image. 

 

 
Fig. 5 Detection of guidewire shadow and lumen center. 

 
segment constituted a closed boundary, and the calcified area 
is automatically filled from this boundary (Fig. 3). The 
training data is subjected to a flip and a rotation (eight 
different rotations in 45-degree increments), and finally, the 
original data is data-enhanced by a factor of 16 (Fig. 4). The 
training is performed using DeepLabv3+, a network for 
semantic segmentation. 
 
In order to visualize the extracted calcified area, it is 
necessary to remove artifacts such as catheters, guidewires, 
and crosshairs drawn by the DICOM viewer. 

First, the catheter is displayed in the center of the OFDI 
image because the catheter is shifted along the guidewire 
inserted into the blood vessel in OFDI (Fig. 5A). After 
binarization of Otsu (Fig. 5B), pixels in the catheter area  

 
Fig. 4 Data augmentation. 

 

 
Fig. 6 Calculating the thickness of calcification as a 

function of the angle. 
 

are removed (Fig. 5C). A median filter is used to remove the 
guidewire (crescent-shaped signal on the side of the catheter) 
and the crosshairs drawn by the DICOM viewer (Fig. 5D). 
Since the guidewire reflects light strongly, a shadow is 
created in the region behind it. Since it is desirable to detect 
this shadow and exclude it from the calculation, the region is 
detected by scanning the pixels radially from the center of 
the image to the periphery (Fig. 5E). Next, it is necessary to 
calculate the thickness of calcification by using the lumen 
center of the vessel instead of the image center. Since the 
luminal center is equal to the center of gravity of the luminal 
region, we construct a closed boundary for the vessel wall by 
connecting the non-empty pixels detected in the scanning 
described above, and finding the center of gravity of the 
figure filled inside the boundary (Fig. 5F). Using these data, 
we visualize the extracted calcified area. First, the thickness 
of the calcification is calculated radially, at certain angles, 
using the center of the vessel lumen as the origin, and the 
maximum value of the angle and thickness of the region 
where the calcification is continuous is obtained (Fig. 6). 
Based on the results in Fig. 5F, the area that is shadowed by 
the guidewire is excluded from the calculation. The thickness, 



 

, is the thickness of the calcified area from the center of 
the vessel lumen at an angle θand is defined by Eq. (1): 
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Here, P is the pixel position, r is the distance from the origin, 
θ is the angle shown in Fig. 6, and S(P) is a function that 
indicates calcification (1) or non-calcification (0). α is an 
adjustment from image space to distance and is calculated 
based on the pixel length and image size. 
The method displays a circle colored according to the 
thickness of the calcified area. The color space is calculated 
using the HSV color system (Fig. 7), and finally is converted 
to the RGB color system. H represents the hue, which is 
calculated using: 

 ∗ 1 / , 3  
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The constant Hmax, which represents the maximum value of 
H, is set to 240 (blue). The constant d, which represents the 
maximum thickness of the calcified area, is set to 0 (red) for 

 . 
 

 
 

Fig. 7 Hue rings used for calculations. 
 

 
Fig. 8 Algorithm for color calculation. 

 
The overall algorithm is described in Fig. 8. The RGB color 
for a thickness  is defined by C, and hsv_to_rgb is a 
function that converts the color space from HSV to RGB. 
 
The final visualization results from the obtained data are 
shown in Fig. 9. The threshold value, , is set to 1.0. 
Areas with no calcification are marked in blue, and areas 
with significant calcification are marked in red. Max Angle 

is the maximum angle at which calcification is continuous, 
and Max Thickness is the maximum value of the thickness. 
 

 

 
Fig. 9 Visualization of calcified area. 

 

3. DISCUSSION 

As opposed to the existing commercial software package 
Ultreon (Fig. 2), the proposed method displays colored 
circles according to the thickness of the calcified area. We 
believe that the proposed method enables us to visualize the 
continuity and thickness of calcified areas, which are 
important for diagnosis, in a more intuitive manner. In 
particular, the proposed system would be useful for 
predicting dilation, because it was difficult to evaluate thin 



 

areas of calcification with Ultreon, where calcified areas are 
likely to be cracked by balloons. The verification results for 
the model used in the experiments are shown in Fig. 10. The 
validation environment is shown in Table 1. The dark blue 
part of the image shows the calcified area, and the light blue 
part shows the non-calcified area. The accuracy and IoU 
[Please define.] are shown in Table 2. 

 
Table 1 Validation environment. 

CPU Intel® Core™ i9-9940X 

RAM 128GB (16GB×8)  

GPU NVIDIA QUADRO RTX 8000 ×4 

OS Ubuntu 18.04 LTS 

Patients 44 

Image size 512×512 pixels 

Training data 31,184 

Test data 200 

Epochs 500 

Minibatch size 32 

Initial learning rate 0.0001 

Optimizer Adam 

 
Table 2 Accuracy and IoU 

 Calcium Background 

Accuracy 0.81 0.98 

IoU 0.62 0.97 

 

 
Fig. 10 External validation results. 

 
 

4. CONCLUSION 

In this paper, we proposed a method to visualize calcification 
images extracted from coronary artery OCT images in a 
more intuitive manner. The continuity of the calcified area is 
represented as a ring shape, and the thickness is represented 
as color information, which enables physicians to understand 
the calcified area intuitively. At present, it is possible that the 
calcified area, which is discontinuous due to the shadow of 
the guidewire, is actually continuous, but the problem is that 
it cannot be detected. There is an approach using a generative 
adversarial network to supplement the missing images, and 
there is room for further investigation of this approach [6]. 
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