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Abstract:  

Percutaneous coronary intervention (PCI) is mainly used in the treatment of stenosis of the coronary arteries of the heart charac-

teristic of coronary artery disease, and it is important that level of calcification is evaluated in advance of this procedure. A 

physician typically examines a cross-sectional angiogram and decides whether PCI is applicable. However, it takes a lot of time 

to interpret many sliced images. It is difficult to accurately assess the entire calcified area from the individual slices. To solve 

these problems, we propose an automatic detection and visualization system for coronary artery calcification by using images 

obtained from optical frequency domain imaging (OFDI). This system assists physicians by automatically detecting and intui-

tively visualizing calcified areas in a short period of time. The system is built using DeepLabv3+, a deep learning network for 

semantic segmentation. The deep neural network was trained using 2,149 coronary OFDI images labeled by physicians. 
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1 Introduction 

When a coronary artery is completely occluded due to acute 

coronary syndrome or chronic coronary artery disease, the 

mortality rate increases for every 15-minute delay in resump-

tion of blood flow after one hour of blood flow interruption. 

It is considered critically important to achieve a blood flow 

recovery time of 2 hours or less from the onset of the disease, 

with a shorter occlusion time leading to a better prognosis. 

Percutaneous coronary intervention (PCI) is the most com-

mon revascularization procedure and is often used to treat 

blockages in coronary arteries. In PCI, a deflated balloon is 
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sent into the occluded artery, inflated to relieve the stenosis, 

and then a stent is implanted. However, in highly calcified 

lesions, stent underexpansion can be problematic, so it is im-

portant to assess the degree of calcification beforehand. 

Intravascular ultrasonography (IVUS) and optical fre-

quency domain imaging (OFDI) are the main techniques 

used to visualize the coronary artery lumen and vessel sur-

face layers. In IVUS, by inserting a miniature ultrasound 

transducer mounted catheter into an artery, a cross-sectional 

image of the vessel wall can be obtained and assessed. While 

IVUS has excellent detection performance for coronary cal-

cium deposits, it is impossible for IVUS to quantify the 

thickness of these deposits due to acoustic shadows [1][2]. 

In comparison with IVUS, OFDI is an intravascular diag-

nostic imaging system with a high resolution of 10-20 μm, 

and is based on near-infrared laser light and fiber-optic tech-

nology. It can be used to evaluate calcification with a spatial 

resolution ten times higher than IVUS and clear image qual-

ity. Along with IVUS, imaging modality has sufficient accu-

racy as a tool for detecting calcification [3], and in recent 

years it has been introduced at various facilities. 

A physician first looks at the distribution of calcification, 

such as continuity, thickness, and intensity of calcified area, 

in order to determine if PCI can be applied, because heavy 

coronary calcification is a poor prognostic factor for PCI [4]. 



However, it takes time to read many high-resolution slice im-

ages, and the reliability of the diagnosis depends on the skill 

of the physician.  

Therefore, we have developed a system that automatically 

detects calcified areas from OFDI images of coronary arter-

ies. The system is built using DeepLabv3+ [5], a deep learn-

ing network for semantic segmentation. The deep neural net-

work was trained using 2,149 coronary OFDI images labeled 

by physicians. The developed system can displays the distri-

bution of calcification area in a more intuitive manner to aid 

in diagnosis.  

In this system, arbitrary slice image display, volume render-

ing display, and easy selection of slice images, and so on, are 

possible. Diagnostic assistance is also provided by indicating 

calcification angles with arcs, and thicknesses with colors. 

The colored circle with the thickness of the calcified area is 

very effective to evaluate both the maximum value of the an-

gle and thickness of the region where the calcification is con-

tinuous. In addition, the developed system can calculate the 

calcium volume index (CVI) defined by Fujino et al. [6], in 

order to objectively estimate whether there is stent underex-

pansion. 

 

2 Related works 

Recently, several machine learning approaches for detecting 

and classifying lesions from optical coherence tomography 

(OCT) images have been reported. He et al. developed a 

model for automatic plaque characterization from OCT im-

ages using convolutional neural networks [7]. Min et al. pro-

posed detecting the thin-cap fibroatheroma using deep learn-

ing techniques from OCT images [8].  

Additionally, Chu et al. developed a new AI framework 

that can automatically characterize plaque in images on a 

pixel by pixel basis, and integrated it into a commercial di 

 

 

Fig. 1 The AI model proposed by Chu et al. was integrated 

into the OctPlus software. This is a screen shot of plaque 

quantitative assessments by the software 

agnostic support system to achieve a highly accurate classi-

fication and display of lesions in vascular cross-sections (Fig. 

1) [9]. 

Abbott Vascular Inc. (Santa Clara, CA) has also developed 

Ultreon 1.0, an AI-based software package for cardiovascu-

lar OCT diagnostic imaging systems. It displays calcified ar-

eas by drawing arcs around the cross-sectional view of the 

blood vessels (Fig. 2a) [10]. However, these interfaces pro-

vide an assessment of the continuity of calcified areas. Only 

the maximum thickness of calcified areas is displayed, no as-

sessment of the thickness of other areas is available. 

A calcium scoring system based on OCT was proposed by 

Fujino et al. in order to predict stent under expansion [6]. The 

calcification score is called CVI and is defined as 2 points 

for a maximum angle of >180°, 1 point for a maximum thick-

ness of >0.5 mm, and 1 point for a length of >5 mm. In the 

validation cohort of their study, it was reported that lesions 

with a CVI of 0 to 3 had excellent stent expansion, whereas 

lesions with a CVI of 4 had poor stent expansion. It was also 

reported that calcification with a maximum thickness of 0.5 

mm or less can be dispersed and the blood vessel has spread 

normally during PCI [6]. The developed system calculated 

and displayed the CVI based on this definition. 

 

  

Fig. 2 a: The system displays the extracted calcified areas as 

orange rings. The figure was created with reference to Ul-

treon 1.0. b: Our newly proposed system. Thickness is indi-

cated by color 

 

3 System overview 

The developed system consists of two functions: a function 

to detect calcified areas and a function to visualize the de-

tected calcified areas. Fig. 3 shows an example of the visual-

ization results for coronary artery calcification. The left im-

age in Fig. 3 shows the detected calcified area overlaid on 

the original sliced image. The thickness of the calcified area 

is indicated by the color gradation of the outer ring. 

Blue indicates less calcification and red indicates more 

calcification. The difference between our system and Oc-

tPlus or Ultreon 1.0 is that our system can directly display 



the total thickness of the calcified area. The cross-sections 

can also be displayed interactively using the slide bar. 

As shown in the right side of Fig. 3, this system supports 

display on mobile devices. The results of the visualization of 

coronary artery calcification areas can be sent to an Android 

device, and the interface can be operated in the same way as 

in the PC version.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 User interface of the system for automatic detection 

and visualization of coronary artery calcification. In the PC 

version, load images from the button at the top left of the 

screen. In the Android version, the user can see the results 

transferred from the PC. Use the slider bar at the bottom of 

the screen to switch slices 

 

Fig. 4 shows the entire flow of data and the various pro-

cessing steps in the system. The image obtained with OFDI 

is sent to a data center via the Internet, and this data center 

automatically categorizes each sliced image using deep 

learning. More specifically, DeepLabv3+ is used to detect 

the calcified area from OFDI images. The images processed 

at the data center are then sent to the user's computer for vis-

ualization. 

 

 
Fig. 5 Creating a labeled image. It is a binary label for 

calcification and background 

 

4 Automatic Detection 

4.1 Detection of the calcified regions 

To detect the calcified regions, we adopted deep learning net-

work for semantic segmentation [11]. The automatic detec-

tion of calcified areas is performed in the following steps: 

data preparation, model training, and segmentation of calci-

fied areas using the trained model. 

The dataset used for training consists of 2,149 coronary 

OFDI images labeled by physicians. For labeling, the physi-

cian traces the inner boundary in red and the outer boundary 

in yellow, and then two experts cross-check the results. Each 

line segment constitutes a closed boundary, and the calcified 

area is automatically filled in from this boundary (Fig. 5). 

The labeled images used in training increase the amount of 

Fig. 4 Dataflow and processing steps for OFDI image classification. 



data to improve accuracy. Specifically, we also applied flips 

and rotations (8 different rotations of 45 degree increments) 

to increase the amount of data by a factor of 16 (Fig. 6). 

 DeepLabv3+, a network for segmentation, was used for 

detecting the calcified regions. The network is shown in Fig. 

7. This network is a type of DilatedFCN and achieved state-

of-the-art semantic segmentation performance in 2018 [5].  

DilatedFCN achieves a high receptive field by using di-

lated convolution, which is a method of convolving while 

extending the filter's range of application.  Therefore, it can 

capture global features with a small number of parameters. 

By layering these dilated convolution layers in a pyramid 

shape (ASPP: Atrous Spatial Pyramid Pooling), 

DeepLabv3+ enables highly accurate segmentation and de-

tection of features at arbitrary resolutions. ResNet-50 [12] 

was used as a backbone network of DeepLabv3+, in order to 

detect the calcified area efficiently. ResNet-50 is a convolu-

tional neural network that is 50 layers deep. We used a pre-

trained version of the network trained on more than a million 

images from the ImageNet database [13].  

 

 
Fig. 6 Data augmentation via flips and rotations 

 

4.2 Thickness calculation 

In order to calculate thickness of calcified areas, it is neces-

sary to remove artifacts such as catheters, guidewires, and 

crosshairs drawn by the OFDI diagnostic imaging equipment, 

which name is LUNAWAVE, Terumo Corporation [14]. Of 

these, the catheter is generally visible in the center of the 

OFDI images because during OFDI, the catheter is shifted 

along the guidewire inserted into the blood vessel (Fig. 8a). 

We applied binarization to the OFDI images using the Otsu 

thresholding method (Fig. 8b) and then removed the pixels 

in the central area where the catheter was likely to be (Fig. 

8c).  

 
Fig. 7  Network Overview. Unlike the original proposal 

for DeepLabv3+, this network does not include a global 

average pooling layer in the ASPP 

 

In Otsu's discriminant analysis method, when a histogram 

is classified into two classes by the threshold value t, the 

numbers of pixels in each group are ω_1 (t) and ω_2 (t), and 

their averages are m_1 (t) and m_2 (t), respectively. Then, 

the threshold value t that maximizes the reference Eq. (1) is 

calculated. 

 

𝜔1(𝑡)𝜔2(𝑡)(𝑚1(𝑡) − 𝑚2(𝑡))2           (1) 

 

It has been reported that this threshold value t has a bias when 

there is a large difference in the number of distributions be-

longing to each class, but since there is no extreme difference 

between the black and white areas in the OFDI images, this 

method is used [15][16]. 

A median filter is then used to remove the guidewire (cres-

cent-shaped signal on the side of the catheter) and the cross-

hairs (Fig. 8d). 

Additionally, since the guidewire reflects light, a shadow 

is created in the region behind it. It is desirable to detect this 

shadow and exclude it from the thickness calculations. The 

shadowed region is detected by scanning the pixels radially 

from the center of the image to the periphery (Fig. 8e). 

It is necessary to calculate the thickness of the calcifica-

tion by using the lumen center of the vessel instead of the 

image center. Since the luminal center is equal to the center 

of gravity of the luminal region, we construct a closed 

boundary for the vessel wall by connecting the non-zero pix-

els detected in the scanning described above, and then find 

the center of gravity of the area obtained by filling in the 



boundary (Fig. 8f). Using these data, we visualize the de-

tected calcified area. 

 
Fig. 8 Detection of guidewire shadow and lumen center. f) 

The red area is the vessel lumen, the green area is the shadow 

of the guidewire, and the blue point is the center of the vessel 

 

4.3 Visualization of calcified area 

The thickness of the calcification is calculated radially, at a 

fixed angle, using the center of the vessel lumen as the origin. 

From this calculation, the maximum value of the angle and 

thickness of the region where the calcification is continuous 

is obtained (Fig. 9). 

Based on the results from the processing step shown in Fig. 

8f, the vessel lumen area and the area shaded by the guide-

wire are excluded from the calculation. The thickness, 𝑑(𝜃), 

is the thickness of the calcified area from the center of the 

vessel lumen at an angle θ and is defined by Eq. (2): 

 

𝑑(𝜃) = 𝛼 ∑ 𝑆(𝑃)

𝐿

𝑟=0

(2) 

𝑆(𝑃) =  {
1 𝑖𝑓 𝑃(𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃) 𝑖𝑠 𝑐𝑎𝑙𝑐𝑖𝑓𝑖𝑒𝑑   

 0 𝑖𝑓 𝑃(𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃) 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑎𝑙𝑐𝑖𝑓𝑖𝑒𝑑
(3) 

 

Here, P is the pixel position, r is the distance from the origin, 

θ is the angle shown in Fig. 9, and S(P) is a function that 

returns 1 for calcification and 0 for non-calcification. Addi-

tionally, α is an adjustment factor to convert between image 

space and distance, and is calculated from the pixel length of 

the calcified area and the image size. 

As shown in Fig. 9, the lumen center, which is the center 

of the vessel, and the catheter center, which is the center of 

the image, are different and must be calculated in the manner 

described in this section. 

 

 
Fig. 9 Calculating the thickness of calcification as a function 

of the angle. The blue area is the calcified area and the red 

area indicated by the symbol d is the thickness calculated 

from the lumen center 

 

The method we developed also displays a circle colored ac-

cording to the thickness of the calcified area. The color space 

is calculated using the HSV color system (Fig. 10), and fi-

nally is converted to the RGB color system. H represents the 

hue, which is calculated using Eq. (4). 

 

𝐻 =  𝐻𝑚𝑎𝑥 ∗ (1 − (𝑑(𝜃)/𝑑𝑚𝑎𝑥)), (4) 

0 ≤ 𝐻 

 

The constant Hmax, which represents the maximum value 

of H, is set to 240 (blue). d_max is a constant that represents 

the maximum range of thicknesses to be colored. The d_max 

was set at 1.0 mm because it is important to know if there is 

calcification with a thickness greater than 0.5 mm. Therefore, 

H is 0 (red) in regions where d(θ) is thicker than 1.0 mm. 

 

 
Fig. 10 The hue value wheel used for calculations 

The overall algorithm for calculating the color is described 



in Algorithm 1. The RGB color for a thickness 𝑑(𝜃) is de-

fined by C, and hsv_to_rgb is a function to convert the color 

space from HSV to RGB. 

 

 
 

The final visualization results from the obtained data are 

shown in Fig. 11. The threshold value, 𝑑𝑚𝑎𝑥 , is set to 1.0. 

Areas with no calcification are marked in blue, and areas 

with significant calcification are marked in red. On the user 

interface, “Max Angle” is the maximum angle at which cal-

cification is continuous, and “Max Thickness” is the maxi-

mum value of the thickness. 

 

4.4 Volume visualization of calcified areas 

Volume rendering is a useful tool for displaying the entire 

calcified area. After detecting the calcified regions from the 

stacked OFDI images, calcified regions are displayed in real 

time. Various visualizations are possible by adjusting the 

transfer function of volume rendering (Fig. 12). 

Volumes can also be visualized on wearable devices such 

as smart glasses, as shown in Fig. 13. By displaying infor-

mation at the physician's eye, it is expected that the physician 

can proceed with the surgery without taking their eyes off the 

operating field. 

 

 
Fig. 11 Example visualization of a calcified area. The col-

ored circle indicates the thickness of the calcified area in 

color. The left image shows the segmentation results without 

display and the right image shows the segmentation results 

with display. The image at the bottom of the screen is a lon-

gitudinal section of a blood vessel, and the orange area is the 

calcified region 

 
Fig. 12 Example volume rendering of calcified areas. The 

image on the left is volume rendered with Joint Vision and 

the image on the center is volume rendered with Volume 

Extractor. The image on the right shows a 3D Viewer dis-

play after the area was divided using ImageJ's MorphoLibJ 

plugin 

 

 
Fig. 13 Example volume visualization using smart glasses. 

The white areas are calcified areas 

 

5 Evaluation 

5.1 Quantitative evaluation of segmentation results 

The Jaccard similarity coefficient (JSC) and the Dice simi-

larity coefficient (DSC) are commonly used indices in the 

field of computer vision to quantitatively evaluate segmen-

tation results [17]. Therefore, JSC, DSC and accuracy are 

used for quantitative evaluation in this paper. 

JSC and DSC are defined as in Eq. (5) and (6).  

 



𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(5) 

 

𝐷𝑖𝑐𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
2 ∙ 𝑇𝑃

2 ∙ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(6) 

 

5.2 Computing results, environment and time 

The prediction results of the model used in the experiment 

are shown in Fig. 14. The predictions of the model used in 

the experiment are shown in Figure 14. From left to right: 

original image, ground-truth, DeepLabv3+ predicted image, 

U-Net predicted image, and FCN predicted image. The dark 

blue part of the image shows the calcified area, and the other 

part shows the non-calcified area. The validation environ-

ment is summarized in Table 1. The development environ-

ment for the PC version of the developed system is summa-

rized in Table 2, and the development environment for the 

Android device version is summarized in Table 3.  

As shown in Fig. 14a, b, c, d, e, f, the model with 

DeepLabv3+ was able to accurately detect calcified area.  

There were a few cases with many false-negative pixels, as 

in Fig. 14g, and a few cases with many false-positive pixels, 

as in Fig. 14h. There were four cases in which the AI recog-

nized more than 3 mm2 more area as calcium than the correct 

answer, and two cases in which it recognized more than 3 

mm2 less. Possible causes of such recognition errors include 

blood clots and the effects of non-calcium plaques. In some 

cases, a portion of the vessel lumen was recognized as cal-

cium, as in Fig. 14i. In this case, these portions were ex-

cluded from the calculation as shown in Section 4.3, so it did 

not affect the final visualization results as shown in Fig. 3 

and Fig. 11.  

JSC, DSC, and accuracy in DeepLabv3+ are shown in Ta-

ble 4. The segmentation accuracy of the calcified area was 

83%. The reason for the good recognition accuracy of the 

background is due to the large number of pixels in the back-

ground. JSC were lower than DSC because they are indices 

that strictly evaluate the position of the target, omission of 

contours, and slight overhang. In comparison with the con-

ventional methods, this model was the best in both JSC and 

DSC. A comparison of JSC and DSC are shown in Tables 5 

and 6. 

The time required for training, the average prediction time 

per image, and the average calcification visualization time 

per image are shown in Table 7. The calcification visualiza-

tion time is measured from just before the Segmented OFDI 

image is loaded until the resulting image is saved on the 

server. For a single image, prediction can be done in about 

1.15 seconds and visualization in about 1.61 seconds. 

Table 1 Validation environment 

CPU Intel® Core™ i9-9940X 

RAM 128GB (16GB×8) 

GPU NVIDIA QUADRO RTX 8000 ×4 

OS Ubuntu 18.04 LTS 

Patients 44 

Image size 512×512 pixels 

Training data 31,184 

Test data 200 

Epochs 500 

Minibatch size 32 

Initial learning rate 0.0001 

Optimizer Adam 

 

Table 2 PC version development environment 

Language Python 3.8.10 

Testing device Windows PC 

OS Version 21H1 (Build 19043.1826) 

 

Table 3 Android version development environment 

Language Kotlin 

Testing device Samsung Galaxy A22 5G SC-56B 

API Level 31 

IDE 
Android Studio Bumblebee 2021.1.1 

Patch 3 

 

Table 4 JSC, DSC, and accuracy 
 Calcium Background 

JSC 0.59 0.97 

DSC 0.72 0.98 

Accuracy 0.83 0.98 

 

Table 5 Comparison of JSC by model 
 Calcium Background 

DeepLabv3+ 0.59 0.97 

U-Net 0.40 0.92 

FCN 0.47 0.94 

 

Table 6 Comparison of DSC by model 
 Calcium Background 

DeepLabv3+ 0.72 0.98 

U-Net 0.55 0.93 

FCN 0.62 0.97 

 

Table 7 Computational time (seconds) 

Training time 258,464 

Prediction time 1.15 per image 

Visualization of calcified 

areas 
1.61 per image 



 
Fig. 14 Prediction result



5.3 Qualitative evaluation 

Five cardiologists were asked a four-question questionnaire 

to evaluate the system. Questions 1 through 3 are as follows: 

Q1. It is reasonable to represent the presence or absence of 

calcified plaque as a circle (Fig. 2) 

Q2. Displaying the thickness of calcified plaque as a colored 

circle (Fig. 2b) is reasonable compared to conventional 

methods (Fig. 2a)  

Q3. Our proposed automated diagnostic system (Fig. 11) is 

effective in clinical practice 

Available answers to questions 1 through 3 are as follows: 

A: Strongly agree 

B: Agree 

C: Neither agree nor disagree 

D: Disagree 

E: Strongly disagree 

The results of questions 1 through 3 are shown in Table 8. 

No cardiologist was negative about representing the presence 

or absence of calcified plaque as a circle or the thickness as 

a color. All cardiologists responded positively to the clinical 

effectiveness of our proposed system. 

In question 4, the cardiologists evaluated the segmentation 

accuracy of the five OFDI slices. Available answers for Q4 

are as follows: 

A: It is very accurate 

B: There are small errors, but they do not affect clinical prac-

tice 

C: There are small errors, which affect clinical practice 

D: There's a clear, big mistake 

As a result, 18 slices were accepted and 7 slices were re-

jected. As shown in Fig. 15, there was a correlation between 

the answers and the JSC. 

 

Table 8 Qualitative evaluation results 

Doctor Q1 Q2 Q3 

1 A B B 

2 A A A 

3 A C A 

4 B B B 

5 C A A 

 

 
Fig. 15 Overview of the answers and the corresponding JSC 

values of the slices. The colored dots are the qualitative eval-

uation answers. 

6 Conclusion 

In this paper, we proposed a method to visualize the calcified 

areas in coronary artery OFDI images in a more intuitive 

manner. As opposed to existing commercial software pack-

ages such as Ultreon (Fig. 2), the proposed method displays 

colored circles according to the thickness of the calcified 

area. The continuity of the calcified area is represented by a 

ring shape, and the thickness information is represented by a 

color gradient. We believe that the proposed method will al-

low physicians to diagnose more easily and quickly if they 

can visualize the continuity and thickness of calcified areas. 

In particular, the proposed system would be useful for pre-

dicting dilation, as it is difficult to evaluate thin areas of cal-

cification with Ultreon, which are the areas that are likely to 

be cracked by balloons. 

In recent years, shockwave therapy has emerged as a new 

approach for the treatment of coronary artery calcification 

[18], and it is expected to become more widespread in the 

future because it can be applied more easily than rotablation 

or other treatments [19]. In this context, the need for methods 

for imaging evaluation of calcified lesions, as in this study, 

is expected to increase. With the current developed system, 

it is possible that the calcified area, which is discontinuous 

due to the shadow of the guidewire, is actually continuous, 

but remains undetected. To address this problem, an ap-

proach that uses a Generative Adversarial Network (GAN) 

to supplement the missing image may be effective [20][21]. 

There are also some areas that cannot be displayed with 

the guidewire in the OFDI image. Compensating for this in-

visible part with a GAN would be very useful for diagnosis. 

Additionally, more accurate segmentation can be achieved 

by increasing the number of labeled images. The labeled im-

ages were created at intervals of 5 mm. Since the original 

images are measured at 1 mm intervals, labeling can be per-

formed with this interval shortened. 
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