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Abstract: Imaging of coronary artery calcification using optical coherence tomography (OFDI) is an essential task in cardiac 

catheterization. Recently, many studies have been conducted to detect lesions from OFDI images, and diagnostic support systems 

equipped with these tools have been developed. However, the interfaces of existing diagnostic support systems pose difficulties 

in assessing thin areas of calcification, which are important for determining the presence of diastolic dysfunction. In this study, 

we created a deep learning neural network model that automatically extracts calcified areas from OFDI image of coronary artery. 

For the extracted calcified areas, to display the thickness of calcification more intuitively, we expressed the continuity as a ring 

shape and the thickness as color information. 
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1. INTRODUCTION 

Optical frequency domain imaging (OFDI) is now widely 

used in the catheterization and treatment of coronary arteries. 

OFDI is an intravascular diagnostic imaging system with a 

high resolution of 10-20μm, based on near-infrared laser 

light and fiber-optic technology. It can evaluate calcification 

with a spatial resolution ten times higher than intravascular 

ultrasound (IVUS), and it can extract calcification clearly 

with high resolution, so it has been introduced in various 

facilities.  

Recently, machine learning models to detect and classify 

lesions from OCT images have been reported in [1, 2, 3]. In 

particular, Chu et al. developed a new AI framework that can 

automatically characterize plaques pixel by pixel, and 

integrated it into a commercial diagnostic support system 

(Fig. 1) to achieve a highly accurate classification display of 

lesions in vascular cross-sections [3].  

In addition, Abbott, located in the U.S., developed Ultreon 

1.0, an AI-based software package for cardiovascular OCT 

diagnostic imaging systems. Fig. 2 shows the user interface. 

It displays calcified areas by drawing arcs around the cross-

sectional view of blood vessels [4]. However, although these 

interfaces provide an evaluation of the continuity of the 

calcified area, only the maximum thickness of the calcified 

area is displayed, and no other thickness evaluation is 

available.  

Since the information required in percutaneous coronary 

intervention (PCI) is not the maximum thickness but whether 

there are regions with a thickness less than 0.5 mm, this 

paper proposes a visualization method, the output of which 

can be understood more intuitively according to the 

continuity and thickness information for calcified regions. 

Specifically, the continuity information is represented as a 

ring shape, and the thickness information is represented as 

color information simultaneously.   

 

 

Fig. 1 Visualization of lesion with OctPlus software. 

 

 
Fig. 2 Visualization of calcified area with Ultreon 1.0 

 

2. METHOD 

In this method, deep learning is used to extract the calcified 

regions [5]. The dataset consists of 2,149 coronary OCT 

images labeled by a physician. For labeling, the physician 

traces the inner boundary in red and the outer boundary in 

yellow, and two experts cross-check the results. Each line 

segment constitutes a closed boundary, and the calcified  

area is automatically filled from this boundary (Fig. 3). The 



 

training data is subjected to a flip and a rotation (eight 

different rotations in 45-degree increments), and finally, the 

original data is data-enhanced by a factor of 16 (Fig. 4). The 

training is performed using DeepLabv3+, a network for 

semantic segmentation. 

 

 
Fig. 3 Creating a labeled image. 

 

 
Fig. 4 Data augmentation. 

 

In order to visualize the extracted calcified area, it is 

necessary to remove artifacts such as catheters, guidewires, 

and crosshairs drawn by the DICOM viewer.  First, the 

catheter is displayed in the center of the OFDI image because 

the catheter is shifted along the guidewire inserted into the 

blood vessel in OFDI (Fig. 5A). After binarization using 

Otsu thresholding method (Fig. 5B), pixels in the catheter 

area are removed (Fig. 5C). A median filter is used to remove  

the guidewire (crescent-shaped signal on the side of the 

catheter) and the crosshairs drawn by the DICOM viewer 

(Fig. 5D).  

Since the guidewire reflects light strongly, a shadow is 

created in the region behind it. Since it is desirable to detect 

this shadow and exclude it from the calculation, the region is 

detected by scanning the pixels radially from the center of 

the image to the periphery (Fig. 5E). Next, it is necessary to 

calculate the thickness of calcification by using the lumen 

center of the vessel instead of the image center. Since the 

luminal center is equal to the center of gravity of the luminal 

region, we construct a closed boundary for the vessel wall by 

connecting the non-zero pixels detected in the scanning 

described above, and find the center of gravity of the figure 

filled inside the boundary (Fig. 5F). Using these data, we 

visualize the extracted calcified area. 

 

 
Fig. 5 Detection of guidewire shadow and lumen center. 

 

 
Fig. 6 Calculating the thickness of calcification as a 

function of the angle. 

 

At first, the thickness of the calcification is calculated 

radially, at certain angles, using the center of the vessel 

lumen as the origin, and the maximum value of the angle and 

thickness of the region where the calcification is continuous 

is obtained (Fig. 6). Based on the results in Fig. 5F, the area 

that is shadowed by the guidewire is excluded from the 



 

calculation. The thickness, 𝑑(𝜃) , is the thickness of the 

calcified area from the center of the vessel lumen at an angle 

θand is defined by Eq. (1): 

𝑑(𝜃) = 𝛼 ∑ 𝑆(𝑃)

𝐿

𝑟=0

(1) 

𝑆(𝑃) =  {
1 𝑖𝑓 𝑃(𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃) 𝑖𝑠 𝑐𝑎𝑙𝑐𝑖𝑓𝑖𝑒𝑑   

 0 𝑖𝑓 𝑃(𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃) 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑎𝑙𝑐𝑖𝑓𝑖𝑒𝑑
(2) 

 

Here, P is the pixel position, r is the distance from the origin, 

θ is the angle shown in Fig. 6, and S(P) is a function that 

returns calcification (1) or non-calcification (0). α is an 

adjustment from image space to distance and is calculated 

from pixel length and image size. 

The method displays a circle colored according to the 

thickness of the calcified area. The color space is calculated 

using the HSV color system (Fig. 7), and finally is converted 

to the RGB color system. H represents the hue, which is 

calculated using equation (3). 

 

𝐻 =  𝐻𝑚𝑎𝑥 ∗ (1 − (𝑑(𝜃)/𝑑𝑚𝑎𝑥)), (3) 

0 ≤ 𝐻 

 

The constant Hmax, which represents the maximum value of 

H, is set to 240 (blue). The constant d, which represents the 

maximum thickness of the calcified area, is set to 0 (red) for 

𝑑(𝜃) >  𝑑𝑚𝑎𝑥. 

 

 
Fig. 7 Hue rings used for calculations. 

 

 
Fig. 8 Algorithm for color calculation. 

 

The overall algorithm is described in Fig. 8. The RGB color 

for a thickness 𝑑(𝜃) is defined by C, and hsv_to_rgb is a 

function to convert the color space from HSV to RGB. 

The final visualization results from the obtained data are 

shown in Fig. 9. The threshold value, 𝑑𝑚𝑎𝑥 , is set to 1.0. 

Areas with no calcification are marked in blue, and areas 

with significant calcification are marked in red. Max Angle 

is the maximum angle at which calcification is continuous, 

and Max Thickness is the maximum value of the thickness. 

 

 
Fig. 9 Visualization of calcified area. 

 

3. DISCUSSION 

As opposed to the existing commercial software package 

Ultreon (Fig. 2), the proposed method displays colored 

circles according to the thickness of the calcified area. We 

believe that the proposed method enables us to visualize the 

continuity and thickness of calcified areas, which are 

important for diagnosis, in a more intuitive manner. In 

particular, the proposed system would be useful for 

predicting dilation, because it was difficult to evaluate thin 



 

areas of calcification with Ultreon, where calcified areas are 

likely to be cracked by balloons. The verification results for 

the model used in the experiments are shown in Fig. 10. The 

validation environment is shown in Table 1. The dark blue 

part of the image shows the calcified area, and the light blue 

part shows the non-calcified area. The accuracy and 

Intersection over Union (IoU) are shown in Table 2. 

 

Table 1 Validation environment. 

CPU Intel® Core™ i9-9940X 

RAM 128GB (16GB×8)  

GPU NVIDIA QUADRO RTX 8000 ×4 

OS Ubuntu 18.04 LTS 

Patients 44 

Image size 512×512 pixels 

Training data 31,184 

Test data 200 

Epochs 500 

Minibatch size 32 

Initial learning rate 0.0001 

Optimizer Adam 

 

Table 2 Accuracy and IoU 

 Calcium Background 

Accuracy 0.81 0.98 

IoU 0.62 0.97 

 

 

 
Fig. 10 External validation results. 

 

4. CONCLUSION 

In this paper, we proposed a method to visualize calcification 

images extracted from coronary artery OCT images in a 

more intuitive manner. The continuity of the calcified area is 

represented as a ring shape, and the thickness information is 

represented as color information, which enables physicians 

to understand the calcified area intuitively. At present, it is 

possible that the calcified area, which is discontinuous due 

to the shadow of the guidewire, is actually continuous, but 

the problem is that it cannot be detected. There is an 

approach using a generative adversarial network (GAN) to 

supplement the missing images, and there is room for further 

investigation of this approach [6]. 
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