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Abstract: The main disorders of the lumbar spine include spondylolysis, spondylolisthesis, and fractures. Spinal fusion is used 
to treat these diseases, and careful preoperative planning is important. Generally, in preoperative planning for spinal fusion, it is 
necessary to extract bone regions from CT images and classify the lumbar spine into L2 to L5 vertebrae. However, accurately 
extracting and classifying the surface shape of the lumbar vertebrae is cumbersome and time-consuming given the complex 
morphology of the vertebrae. In addition, it is necessary to prepare a large amount of learning data in order to improve the 
extraction accuracy of deep learning. In the present study, we attempt to improve the accuracy of automatic spine extraction with 
less learning data by adding an adversarial network and boundary information to automatic segmentation using a fully 
convolutional network and evaluate the results. 
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1 INTRODUCTION 

The main spinal disorders include spondylolysis, 

spondylolisthesis, vertebral body fracture, and scoliosis. 

Spinal fusion is used to treat these diseases and requires 

thorough preoperative planning. A recently developed tailor-

made implant stabilizes the upper and lower vertebrae by 

fixing the laminae with fit-and-lock platesand rods. This 

technique requires accurate measurement of each lumbar 

vertebra, especially when the plate is attached to the lumbar 

spine (Fig. 1). There are five lumbar vertebrae, which are 

referred to, from the top, as the first through fifth lumbar 

vertebra (L1-L5). However, accurate extraction is difficult 

because the lumbar vertebrae overlap in a complicated 

manner. These are important problems for diagnosing spinal 

disorders. 

In the present study, we classify the lumbar vertebrae of 

CT images from the spine segment into L2 to L5 using a fully 

convolutional network (FCN) [2], which is a convolutional 

neural network (CNN). In the FCN, we attempted to improve 

the extraction accuracy by changing the contour weight 

using bone contour information. Furthermore, adversarial 

training [3] was introduced in order to prevent over-learning. 

2 RELATED RESEARCH 

2.1 Spine instance segmentation 

Kato et al. developed an instance segmentation method  

 
Fig. 1. Tailor-made spinal fixation implants [1] 

 

that classifies L3, L4, L5, and S1 using deep learning from 

spinal CT images [4]. In this method, two lumbar spine cases 

were successfully classified. However, it was clarified that it 

was not possible to cope with cases that were not learned 

(cases with curved bones or cases with different luminance 

distributions). In addition, since four lumbar vertebrae are 

extracted simultaneously, it is necessary to reduce the image 

size with an FCN. 



2.2 Deep learning using a fully convolutional network 

Fully convolutional networks have shown high accuracy 

in the field of segmentation in recent years. The FCN is a 

network model in which a fully connected layer is excluded 

from a CNN, and all layers are convolutional layers. The 

FCN is often used for semantic segmentation because the 

position information of the object on the image is not lost by 

eliminating the fully connected layer and there is no 

restriction on the size of the input image.  

The FCN network structure of the proposed method 

adopts the Encoder-Decoder type and is shown in Fig. 2. The 

network consists of five layers. The Encoder part uses feature 

extraction by convolution. The convolution filter is a 5×5×5 

filter, and the activation function uses a parametric rectifier 

linear unit (PReLU) [5]. Down-sampling uses a stride-2 

2×2×2 filter convolution so that the number of feature map 

channels is doubled. In the Decoder part, upsampling is 

performed to return the feature map to its original size and 

perform segmentation. For the convolution filter, we used a 

13×13×13 global convolutional network (GCN) [6] that can 

apply a large-scale kernel filter with a small number of 

parameters and reduce the amount of computation. The 

activation function is a PReLU, as in the Encoder part. 

Upsampling uses a stride-2 2×2×2 filter transposed 

convolution so that the number of feature map channels is 

halved. In order to prevent the disappearance and divergence 

of the gradient, residual learning is performed by adding the 

first and last feature maps in each layer [7]. In order to solve 

the problem of local feature loss during downsampling, a 

feature map is transmitted from the encoder to the decoder 

[8]. Finally, the feature map output from the network is 

converted into the probability that a voxel belongs to each 

class using a softmax function. 

 

 
Fig. 2. FCN network 

2.3 Prevention of over-fitting with Adversarial Training 

In order to prevent over-fitting, the loss value obtained 

by adversarial training is added to the loss value. Adversarial 

training is a technique to improve the generalization 

performance of a model by learning for an adversarial 

example. An adversarial example is the original image plus 

the hostile perturbation calculated to maximize the loss value. 

The overall loss function is expressed as follows: 

 
𝐿௦௘௚ = 𝐿௦௧ + 𝐿௔௧⋯(1) 

𝐿௦௧ = − ෍ ෍𝑦௡
(ௗ,௛,௪,௖)

௖∈஼ௗ,௛,௪

𝑙𝑜𝑔(𝑆(𝑥௡)
(ௗ,௛,௪,௖))⋯ (2) 

𝐿௔௧ = − ෍ ෍𝑦௡
(ௗ,௛,௪,௖)

௖∈஼ௗ,௛,௪

𝑙𝑜𝑔(𝑆(𝑥௡ + 𝑟)(ௗ,௛,௪,௖))⋯ (3) 

 

where 𝐿௦௘௚ is calculated as the sum of 𝐿௦௧ and 𝐿௔௧, where 

𝐿௦௧ is the sum of the label data of each pixel and the cross-

entropy of the segmentation result, and 𝐿௔௧  is the loss 

related to adversarial training. In addition, 𝑦௡ is the pixel 

value of the label data, and 0 or 1 is entered depending on the 

class to which the pixel belongs. As will be described later, 

if the target pixel is a bone contour, 𝑦௡ > 1  is used to 

enhance learning with bone contour information. Moreover, 

𝑥௡ is the original data (CT image), d, h, and w indicate the 

voxel position (depth, height, and width), c is the number of 

channels, and 𝑆(𝑥௡)  is the probability of belonging to a 

certain class of FCN. The perturbation added to the original 

CT image is output by the FCN, and the sum of cross-entropy 

is calculated based on the result. Here, 𝑟 is the perturbation 

obtained by adversarial training. 

3 METHOD 

3.1 Isotropic voxelization 

In order to improve the accuracy of image classification, 

a data set of isotropic 3D images is used for training. Tri-

linear interpolation was used to estimate pixel values where 

there are no pixels, which is necessary for isotropic image 

processing. 

Isotropic image processing unifies the actual size in each 

direction (number of voxels × voxel width) across all 

datasets. A reference value is set for the distance in 

millimeters set around a specific affected area of the CT 

image, and the isotropic voxel width and the number of 

voxels were adjusted to satisfy this standard (Fig. 3). 

The actual size was determined as shown in Fig. 4, and 

the voxel width was unified at 1.0 mm. Each data set was 

arranged so that the center of gravity of the vertebral body 

was at the center of the image. In order to reduce unnecessary 

areas, the number of voxels was set to X: 96.0, Y: 112.0, and 

Z: 64.0. 

 



 
Fig. 3. Conceptual diagram of isometricization of an image 

of actual size. MM = actual size (mm), w = voxel width, n 

= number of voxels; MM = w × n is equalized so that all 

data sets match. 

 

 
Fig. 4. Cutout reference value for vertebral 

 

3.2. Learning enhancement of contour using edge images 

Lumbar vertebrae were classified by an FCN 

incorporating bone contour information. The contour 

information is used to change the value of 𝑦௡  when 

calculating the loss function. The calculation used to 

determine the loss for each pixel is expressed by the 

following equation: 

 

𝑙𝑜𝑠𝑠 = −𝑦௡
(ௗ,௛,௪,௖) log 𝑆(𝑥௡)

(ௗ,௛,௪,௖)⋯(4) 
 

The loss function uses cross-entropy and calculates the 

similarity between label data and the segmentation results for 

all pixels. Here, x is the probability from 0 to 1 that the output 

from the FCN belongs to a class of voxels. Moreover, 

−log 𝑥 approaches ∞ as x approaches 0 and approaches 0 

as x approaches 1 (Fig. 5). 

 

 
Fig. 5. Probability transition for the value of x 

 

Here, y is the pixel value of the label data. For example, 

if y is pattern divided into 0, 1, and 1.1, it is expressed by the 

following formula. The greater 𝑦௡ is, the greater the impact 

on the loss value is. Therefore, in order to reduce the loss 

value, it is necessary to learn that the value of x more closely 

approaches 1 for pixels with large 𝑦௡ than for pixels with 

small 𝑦௡ . Therefore, pixels with large 𝑦௡  can be learned 

more efficiently. 

Based on the above properties, a Laplacian filter was 

applied to the label data to create a boundary image with a 

background of 0 and a boundary of 1. The label data and the 

boundary image were compared on a pixel-by-pixel basis. If 

both the label data and the boundary image were pixel 1, then 

learning was performed by changing pixel y of the label data 

to 1.1. As a result, learning with enhanced contours is 

possible, and the accuracy of bone contour extraction is 

improved. 

3.3. Creating training data 

We created a data set that extracted L2, L3, L4, and L5 

vertebral bodies from 11 spinal CT images. The data set was 

44 cases (11 × 4), as shown in Fig. 4, and nine cases were 

used for training. In the training data creation, in creating the 

L2 data set, when the L2 of the original image is clipped, the 

boundary between the upper L1 and L3 is given, and the label 

data is only that for L2. In the second experiment, the surface 

deviation of the coordinate data measured by 3D scanner 

after shaving off the meat around the bone of the same part 

as the DICOM data taken from the abdominal multi-slice CT 

prepared separately from Experiment 1 were visualized 

using GOM Inspect and compared. 



4 RESULTS 

Based on the results of learning with the proposed 

method without distinguishing L2 through L5, we conducted 

two experiments. In the first experiment, segmentation was 

performed for eight cases that were not used for learning, and 

the extraction accuracy was evaluated using Intersection 

over Union (IoU). 

4.1. Segmentation results and IoU evaluation 

Figure 6 shows an example of the results of segmenting 

eight cases based on the learned data. Table 1 shows the 

average IoU for all cases. 

 

 
Fig. 6. Example of experimental results (from the top: L2, 

L3, L4, and L5) 

 

Table 1. Average Intersection over Union of the evaluation 

results 
Extraction 

site 
Baseline Using edge images 

L2 0.846 0.904 
L3 0.835 0.889 
L4 0.790 0.840 
L5 0.789 0.705 

 

4.2. Visualization evaluation of surface deviation 

Using GOM Inspect, the segmentation results are 

compared with CT images and 3D scan data, and the surface 

deviations are visualized in color. The color of the surface 

deviation shows that it shifts to the outside from the original 

data as it changes from green to red, and it shows that it shifts 

to the inside as it changes to blue. 

4.3. Discussion 

When the test images of two cases were evaluated in 

Experiment 1, the contours of L2 to L4 could be extracted, 

and the results were less affected by other parts than without 

contour enhancement. However, the extraction results for L5 

were not stable in any case. This may be due to the fact that 

there is a large individual difference in the boundary with S1 

(sacrum), which is the lower part of L5. In addition, the shape 

is different from L2 to L4, and the number of cases is smaller 

than that for L2 to L4. Therefore, the shape may be 

influenced by the contours learned from L2 to L4. 

In addition, when the degree of coincidence with the CT 

image was compared in Experiment 2, there was a large 

difference between the upper and lower vertebral bodies and 

the intervertebral disc and the lumbar vertebrae for the 

proposed method, as compared to the conventional method. 

The erosion of the outer surface is reduced. In comparison 

with 3D scan data, the results varied depending on the 

number of cases. This is because the data used for learning 

was a CT image. 

5 CONCLUSION 

In the present study, 36 cases for L2, L3, L4, and L5 

single vertebral body data sets were carefully selected from 

spinal CT images and were used for training. In addition, the 

surface deviation between the scan data and the CT image 

prepared separately and the results of segmentation using an 

FCN was visualized and evaluated. 

Here, for L2 to L4, there were good cases and deformed 

cases, and L5 was not stable as compared to L2 to L4. The 

cause may be that there is a large individual difference in the 

boundary with a lower S1 and that the training is not 

sufficient. Finally, L2 to L5 also have individual differences 

in bending that should be taken into account. 
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