Anatomy and Assessment of Left Atrial Appendage for Percutaneous LAA Closure

Maiko Hozawa^{*1} Yoshihiro Morino^{*1} Kyohei Nagata^{*1} Yuki Matsumoto^{*1} Michiko Yoshizawa^{*1} Yoshifumi Nakajima^{*1} Akiko Kumagai^{*1} Atsushi Tashiro^{*4} Akio Doi^{*3} Kunihiro Yoshioka^{*2}

Division of Cardiology, Department of Internal Medicine, Iwate Medical University*1

Department of Radiology, Iwate Medical University*2

Software and Information Science, Iwate Prefectural University*3

Department of Laboratory Medicine, Iwate Medical University*4

The Japanese Circulation Society COI Disclosure

Maiko Hozawa

The author has no financial conflicts of interest to disclose concerning the presentation.

Percutaneous Left Atrial Appendage Closure

Percutaneous Left Atrial Appendage Closure

Pre Procedural Assessment

Key: Characteristics LAA

- 1. LAA Morphology, Axis
- 2. Surrounding structures of LAA

 PV ridge, Left circumflex artery, Mitral valve
- 3. LAA ostium diameter and depth

1. Left Atrial Appendage Morphology

Chicken Wing (48%)

Cactus (30%)

Windsock (19%)

Cauliflower (3%)

2. Surrounding structure

with three dimensional cardiac CT

2. Surrounding structure

Landmarks for procedure

Inside

Percutaneous Left Atrial Appendage Closure

Pre Procedural Assessment

Key: Characteristics LAA

- 1. LAA Morphology, Axis
- 2. Surrounding structures of LAA

PV ridge, Left circumflex artery, Mitral valve

3. LAA ostium diameter and depth

Determine the adaptation for LAA closure

3-1. LAA ostium

- Elliptical ostium of the LAA: long axis 10-40mm, a short axis 5.2-19.5mm (5.7% round shape)
- A progressive increasing, more round shape in LAA ostium with AF
- Increase with aging, regardless of the gender
- **Volume loading leads to enlargement LAA ostium**

John P. Veinot; Circulation. 1997;96:3112-3115 Tabata T: Eur J Echocardiography 2000; 1

3-1. LAA ostium

Watchman device is designed to occlude the Oa Suitable for LAA closure: 17-31mm

- Oa: Anatomical orifice
- Left circumflex artery

3-2. LAA depth

Determine the adaptation for LAA closure

- Oa: Anatomical orifice
- Left circumflex artery
- ••••• Depth of landing zone

Depth of landing zone should be equal or greater than the ostium

3-2. LAA depth

Depth of landing zone should be equal or greater than the ostium

Access Sheath Marker Band	Loaded Device Length
21mm	20.2mm
24mm	22.9mm
27mm	26.5mm
30mm	29.4mm
33mm	31.5mm

Percutaneous Left Atrial Appendage Closure

Pre Procedural Assessment

Key: Imaging for LAA

- 1. LAA Morphology, Axis
- 2. Surrounding structures of LAA PV ridge, Left circumflex artery, Mitral valve
- 3. LAA ostium diameter and depth

Imaging Assessment for LAA closure

Transesophageal Echocardiography is gold standard

Assessment LAA by TEE in multiple view

Assessment LAA by 3D-CT

Cardiac CT provides high spatial resolution and structural depiction

Virtual TEE viewer application

Pre Procedural Assessment with Non Invasive system

Virtual TEE viewer application

Pre Procedural Assessment with Non Invasive system

Virtual TEE viewer application

Comparison of TEE and Virtual TEE viewer by CT

Summary

- ➤ More than 90% of thrombus in patients with AF locates LAA.
- > LAA ostium is usually elliptical.
- > Volume loading leads to enlargement LAA ostium.
- Depth of landing zone should be equal or greater than the ostium.
- > Multiple view by TEE is common assessment for LAA.
- CT provides superior spatial resolution to evaluate LAA, and can be useful as pre procedural assessment.

Conclusion

- ➤ Percutaneous LAA closure is the "focal" treatment and preventive procedure for cardioembolic infarction.
- ➤ Understanding LAA anatomy and accurate assessment of the LAA is critically important for percutaneous LAA closure.

