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Abstract— The prehospital-electrocardiogram (PH-ECG) is 

an electrocardiogram (ECG) measurement performed by 

paramedics on a patient suspected of having a myocardial 

infarction, for example, in an ambulance and the data are 

transmitted to the hospital. A physician at the hospital can 

diagnose the condition of a patient based on the transmitted 

ECG, thus making efficient use of the time before the patient 

arrives and enabling an early start to treatment. The PH-ECG 

is particularly useful for patients who require immediate 

medical attention, such as those with ST-elevation myocardial 

infarction (STEMI). Multiple studies have shown that PH-ECG 

improves door-to-balloon time and in-hospital mortality. 

However, it is necessary to understand the various patterns of 

abnormal waveforms when analyzing PH-ECG, and it is 

difficult to make an accurate diagnosis quickly without a 

cardiologist. In areas where there is a shortage of hospitals and 

physicians, diagnosis is performed by non-cardiologists, and 

there is a need for an automated diagnosis system with 

performance similar to that of cardiologists. 

Recent studies on automated ECG diagnosis have focused on 

diagnosing specific abnormal findings, especially the 

classification and discrimination of myocardial infarction and 

arrhythmias. On the other hand, there are very few studies on 

the classification of disease severity, independent of the types of 

abnormal findings. In this work, we analyzed a 12-lead ECG 

measured in an ambulance using deep learning neural network 

to classify and evaluate the abnormal waveforms according to 

degrees of severity. For 88 cases of 12-lead ECG image data 

measured in the ambulance, each 12-lead waveform was divided 

into three parts, and 36 one-lead ECGs were extracted. An 

expert cardiologist annotated each image. The images were 

labeled in three classes according to the degree of severity, 

"normal," "mild or moderate," and "severe." Each image was 

thinned and binarized. Of  3,168 final images, 1,590 were normal 

waveforms, and 1,578 were abnormal waveforms. 80% of the 

images were used as training data and 20% of the images were 

used as test data. A total of 20% of the training data were used 

as validation data, five-fold cross validation was performed. 

EfficientnetB0 was used. The model was defined using the 

network designer in MATLAB. The input image size was set to 

224 × 224 pixels, and resizing was performed when no match 

was found. The optimization method was Adam, and the 

hyperparameters were set to α = 0.0001, β_1 = 0.9, and β_2 = 

0.999. We set the mini-batch size to 64 and the epoch to 100.  We 

could achieve as a kappa coefficient of 0.810 and maximum 

classification accuracy of 86.6% for the test data. The result 

indicates the feasibility of an automatic diagnosis system using 

noisy ECGs measured in ambulances and is expected to provide 

a new research direction. 
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I. INTRODUCTION 

The prehospital electrocardiogram (PH-ECG) is an ECG 
measurement performed by paramedics on a patient suspected 
of having a myocardial infarction, etc., and the data is 
transmitted to the hospital. A physician at the hospital can 
diagnose a patient's condition based on the ECG transmitted 
to him or her, thus making the best use of the time before the 
patient arrives and enabling an early start of treatment. PH-
ECG is particularly useful for patients who require immediate 
medical attention, such as ST-elevation myocardial infarction 
(STEMI) [1]. Multiple studies have shown that PH-ECG 
improves door-to-balloon time and in-hospital mortality [1], 
[2], [3], [4]. However, it is necessary to understand the various 
patterns of abnormal waveforms when analyzing PH-ECG. It 
is difficult to make an accurate diagnosis quickly without a 
cardiologist. In areas where there is a shortage of hospitals and 
physicians, diagnosis is performed by non-cardiologists, and 
there is a need for an automated diagnosis system with 
performance equal to or better than that of cardiologists [5]. 

Recent studies on automated ECG diagnosis have focused 
on diagnosing specific abnormal findings, especially the 
classification and discrimination of myocardial infarction and 
arrhythmias [6], [7]. On the other hand, there are not enough 
studies on the classification of disease severity independent of 
the types of abnormal findings [8]. In this study, we analyzed 
the 12-lead ECG measured in the ambulance using deep 
learning to classify and evaluate the three classes of severity. 
In addition, the ambulance environment is prone to noise 
contamination due to patient motion and electrode 
dislodgement. Our main focus is to train and test without 
excluding data containing such artefacts. An example of an 
artefact is shown in Fig. 1. In the next section, we briefly 
describe the related studies, followed by a description of our 
proposed approach in the next section. In Section IV, we 



present the experimental results and conclude in the last 
section. 

 

 

Fig. 1 Wandering artefact due to shaking of electrodes 

 

II. RELATED WORKS 

Although there are few studies on the detection of 
abnormal findings by machine learning using only PH-ECG, 
Al-Zaiti et al. used a study population of Americans to predict 
acute coronary syndromes [9]. However, since Simonson [10] 
reported a statistically quite large difference between Japanese 
and American ECGs, we used Japanese as the study 
population in the experiments in the next section. 

 

III. METHODS 

Dataset:  Large amount of labeled data  are  needed to train 
a neural network for  the classification of disease severity 
independent of the type of abnormal finding. For 88 cases of 
12-lead ECG image data measured in the ambulance, each 12-
lead waveform was divided into three parts, and 36 one-lead 
ECGs were extracted from one 12-lead ECG. An expert 
cardiologist annotated each image. They were labeled in three 
classes according to severity: "normal," "mild or moderate," 
and "severe." Each image was thinning and binarized. Of the 
3,168 final data, 1,590 were normal waveforms, and 1,578 
were abnormal waveforms. 80% of the samples  were used as 
training data and 20% as test data for classification experiment 
In the next section, 80% of these data were used as training 
data and 20% as test data. A total of 20% of the training data 
were used as validation data, and cross-validation was 
performed in five parts. Data were provided by Iwate 
Prefectural Ninohe Hospital. 

Model: EfficientnetB0 [11] was used. The model was 
defined using the network designer in MATLAB. The 
network structure of the model is shown in Fig. 2. The input 
image size was set to 224 × 224 pixels, and resizing was 
performed when no match was found. The optimization 
method is Adam, and the hyperparameters are set to α=0.0001, 
β_1=0.9, β_2=0.999. We set the mini-batch size to 64 and the 
epoch to 100. As shown in Fig. 3, Loss converged before 
epoch 100, and there was no improvement in learning 
accuracy when the epoch was increased above 100. We 
performed a horizontal and vertical shift of 30 pixels on the 
training data and used slightly different datasets for each 
epoch. However, considering the effect of vertical shift on 
training, we performed the same experiment with the only 
horizontal shift. 

 

Fig. 2 Structure of convolutional neural network used 

 

Fig. 3 Learning curve for best fold, blue means accuracy 
and red means loss. 

IV. RESULTS 

The accuracy and Kappa coefficients are shown in Table 
1. The confusion matrix resulting from the inference on the 
test data is shown in Fig. 4. Class Activation Map (CAM) is 
shown in Fig. 5. 

Table 1 Accuracy and Kappa coefficient 

Fold Accuracy of  

experiment (a) (%) 

Kappa of 

Experiment (a) 

Accuracy of  

Experiment (b) (%) 

Kappa of  

Experiment (b) 

1 86.3 0.810 85.7 0.780 

2 86.5 0.814 84.9 0.746 

3 83.6 0.816 87.1 0.820 

4 86.6 0.801 86.5 0.814 

5 81.9 0.810 86.0 0.748 

Avg. 85.0 0.810 86.0 0.782 



 

 

 

 

 

Fig. 4 Confusion matrix 

 

 

 

 

Fig. 5 Inference and CAM on test data: a model with vertical data 

extension, b model without vertical data extension, c ground-truth 

 

Here, Accuracy means the percentage of the classification 
results that match the correct labels. The Kappa coefficient is 
a statistic that describes the degree of agreement between the 
results of two observers' observations of a phenomenon. As a 
result, at the best fold (Table 1 experiment (a) Fold 3), the 
Kappa coefficient between the model and the cardiologist was 
0.816. This was in the range of 0.81-1.00, which is judged as 
"almost perfect agreement" in the guidelines of Landis [12]. 
At the worst fold, the Kappa coefficient in the external 
validation was 0.782, which is in the range of 0.61-0.80, which 
is considered a "fair agreement. 

Fig. 5 shows that, in experiment (a), even when the model 
could focus on the correct location, they often gave wrong 
answers. The vertical shift in data expansion may have caused 
the loss of height characteristics, making it difficult to detect 
findings such as ST elevation and T-wave amplification in the 
waveform. On the other hand, the average Kappa coefficient 
was higher in experiment (a). The lack of vertical data 
expansion may have degraded the generalization performance 
of experiment (b). 

V. CONCLUSION 

In this study, 12-lead ECGs measured in an ambulance 
were analyzed using deep learning to classify and evaluate the 



severity of the disease. As a result, inference on the test data 
resulted in a kappa coefficient of 0.810. In the future, we plan 
to ensemble the model of this study to classify the severity of 
the disease in the entire 12-lead PH-ECG. 
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